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A perturbation formulation is developed for the calculation of spin densities in liquid metals

using nonlocal pseudopotentials.
mental interference function data.

Specific application is made to liquid cadmium using experi-
The results explain the observed temperature independence

of the Knight shift and nuclear-spin lattice relaxation time and provide empirical exchange-
enhancement factors for these properties. A comparison is made with prediction of current
exchange-enhancement theories and suggestions are made for improvement of the agreement
between theoretical and experimental Knight shifts and relaxation times.

1. INTRODUCTION

A variety of experimental resonance -data such
as Knight shift K; and nuclear-spin lattice relaxa-
tion time T, are becoming increasingly available
for a number of liquid metals.~% There appear to
be three specific hyperfine effects associated with

the data. Two of these, related to each other, are
K, and the relaxation rate 1 /T, due to the Korringa
type of process, which is the only important one for
spin- 3 nuclei. The third property, namely, the
nuclear quadrupole contribution to the relaxation
rate, 3* requires a knowledge of the dynamics of

the ionic motion in addition to the average ionic
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distribution and the electronic wave functions that
the first two properties require. This paper will
be concerned only with the Knight shift and Korringa
type of relaxation process.®

The theoretical situation with respect to K; and
T, is currently becoming increasingly better under-
stood in the solid state® from a quantitative point
of view. One is now able to unravel from the data
on K and T, such sophisticated effects as the con-
duction-conduction exchange contribution to the
static and dynamic electronic susceptibilities.”
This has become possible as a result of our im-
proved understanding of the spin density in the
solid due to two main developments. One of these
is the availability of a practicable procedure for
evaluating exchange-core-polarization (ECP) ef-
fects.®? The second is the current possibility of
carrying out detailed scanning of the spin density
at the Fermi surface employing high-speed com-
puters. The use of pseudopotential techniques'®
is particularly expeditious with respect to this lat-
ter step.

In the liquid a detailed scanning of the Fermi sur-
face is not necessary because it is expected to be
spherical on a time-averaged scale. There are,
however, difficulties in developing theories for
hyperfine effects in liquid metals, some of which
are purely theoretical in nature and some due to
lack of sufficient experimental information. Con-
sidering the latter features first, we need informa-
tion in the liquid which is a convenient substitute
for the known crystal structure in the solid. Such
information is presently available from x-ray dif-
fraction experiments in the liquid. !**> However,
as will be shown later in the text of the paper, addi-
tional information pertaining to the ionic distribu-
tion is necessary for developing a complete theory
for the spin density in the liquid.

From the theoretical point of view there are a
number of questions to be answered. The first is
connected with convergence effects in a perturbation
approach involving continuum states of the electron
gas. This question does not occur in the solid state
in view of the periodicity of both the real and
Fourier space lattices which avoids vanishing ener-
gy denominators in perturbation approaches to
wave functions. A second and related question is
the computational complexity associated with the
use of nonlocal pseudopotentials which seem to be
essential for a number of metals. A third question
is the difference in nature of the exchange-enhance-
ment effects for the static and dynamic susceptibil-
ity in the solid and liquid phases.

This paper addresses itself to these questions of
theory with a particular application to liquid cad-
mium. This metal is of interest because of its
unusual nuclear-magnetic-resonance (NMR) prop-
erties in the solid''** and liquid phases.! The iso-
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tropic and anisotropic Knight shifts in the solid
phase increase strongly with temperature. In the
liquid K, however, is almost constant with tem-
perature. The Korringa ratio is constant both in
the solid and liquid states but changes discontinu-
ously at the melting point, Additionally, the theo-
retical analysis of solid-state data!* indicates that
the exchange enhancements of the susceptibility
and relaxation rates are substantially higher than
those for the free-electron gas. It is interesting
to investigate the corresponding situation in the
liquid.

In Sec. II the problem of the spin density for the
liquid state will be formulated by a perturbation
approach using a nonlocal pseudopotential. Section
III will be concerned with the technical details of
the actual computation and discussion of the results
as they pertain to cadmium in particular, and liquid
metals in general. Section IV summarizes the main
conclusions from this work.

'

II. THEORY

The Knight shift K in the liquid metal is given
by the expression

K,=$7XNQt, 1)

analogous to the solid where ¢ is the spin density
and X, is the Pauli paramagnetic spin susceptibility
per unit volume. N and &, are, respectively, the
number of ions in the liquid and volume per atom
parallel to the Wigner-Seitz volume in the solid
state. The spin density ¢ in the liquid is given by

E= AN e R |2 gy @)

where z,bkF (_ﬁ,) is the conduction-electron wave func-
tion at the R,;th nuclear site, The inner average
with respect to N in Eq. (2) takes account of the
fluctuations at the ionic sites due to the atomic
motions in the liquid. In the solid, due to the or-
dered lattice structure, such an averaging is
normally unnecessary unless one is interested in
temperature variations of the Knight shift. The
outer average sign with suffix F describes the
Fermi-surface average and is of no consequence
when the Fermi surface is assumed to be a sphere
in the liquid state as we shall do here. Thus the
spin density in the liquid is, in fact, taken in the
form

£= (V15| 9, ()] (3)

In the orthogonalized-plane-wave (OPW) formal-
ism, the value of the conduction-electron wave func-
tion at the nucleus at the Fermi surface is given
by

zka (ﬁ ‘) - N;;WQO)-IIZERCG;F + 'K)ei (kp+R )-ﬁ{

x [1 - 22:6,&x+K)®,(0)], @
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Where = OlzzF<N-IEl’ (pkp (ﬁi)’ 2)} (9)
Npp=[1- (/20258 (k5) ]/ (5) where the pseudofunction &, ,(R,) is given by

is the normalization constant. The quantities C

(kp + K) are the coefficients of linear combination

of OPW which are obtained in the solid state by a
variational procedure involving a discrete number
of basis sets as a result of translational symmetry.
Alternatively, 1*'!5 one can obtain a linear combina-
tion of plane waves using pseudopotentials and then
orthogonalize them to the core states. In the liquid,
however, due to the continuous nature of the mixing
between plane waves belonging to adjacent values

of kx, avariational procedure is not applicable and
one has to resort to a perturbation approach. The
quantity ®,(0) is the value of the core-state wave
function ¢ at the origin. Since the non-s core states
have zero density at the origin, the summation
over ¢ in Eq. (5) reduces only to summations over
the core s states. b,(Kp+K) is the orthogonaliza-
tion parameter given by

by (K g+ K) = (@4(F)| ! Br+RIH), ®)

Since b,(EF+ K) is a slowly varying function, we
shall assume

by (kg + K) ~0,(%p) . ™

Such an approximation was utilized recently in the
calculation of the spin density in solid cadmium?*:1
and was found!* to enhance the spin density by only
10% over the value obtained without this approxi-
mation. With this assumption, one obtains an en-
hancement factor

o, =5 (1-Zouren o) (®)

to be multiplied to the spin density calculated from
the linear combinations of plane-wave functions.
Using Eq. (8), Eq. (3) takes the form

N Qg)* & EXE wiky e R
(2) (ﬁi) (2 )6 G@J'f (EkF _ Eh:) (EkF — Ek") (Nﬂo)llz

ik ﬁ{

®,,[R,) = ()2 eClkp+ K)e! W+ BRi (10)
It is appropriate to refer to
Pe=(N"2| 2, ®))|? (11)

as the pseudodensity. With these definitions, the
Knight shift is given by

K, = $mXN 0% P (12)

In perturbation theory, the pseudofunction in Eq.
(1) can be expanded up to second order in the pseu-
dopotential in the form

8, R)=00R,)+ o LR)+ 22 R,), (13)
where @}eg’(ﬁt) is the zero-order function

‘I>(°)(R,) (NQ )-1/2 iiF.R, (14)

The pseudopotential W({T) can be expressed as a
sum of equivalent terms centered at the various
ion sites, namely,

W) =2w@ - R,). (15)

The first- and second-order corrections <I>‘”(R,)
and <I>(2’(R,) can be obtamed using conventlonal
perturbation theory,!” with the summations over
excited states replaced by integration due to their
continuum nature.. Thus

1 N@Q

- i(kF-k')'R,,
(NQo)' " (211)3 2

&1 (R,)=

>, -

X @dek’M.&) eik"ﬂi’ (16)
EkF - k'

where the symbol ® stands for a principal-value

integration and

35,7737 1 i@k R, 1 i(kp-k-R,
de'd*e" =X e va)e

M

_ l@fdsk” Kk Iw!k >|2

(Brp— Epn)® (NG)M2 Na

e a0 Kelwlk"™ eF
(k| w| k)@ f Tk By~ B (NOJ™

In terms of the various perturbation components
of ®,., the pseudodensity can be expressed as

Pr=Pg(00)+ Pp(01) + Pr(11) + P£(02), (18)

where

2 ikp-Fne (R®, -R))

ik R, _1_2 ei(gu_i;F).ﬁl] )
N’ :
r
P(00)=(N" 234 q’éﬂ’(ﬁi)lzh (19)

Pp(01)=(2Re(1/N) 2; 2 *R )2 R,  (20)

PR11)= (N1, | 2 D[R] 2, (1)
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P(02)=(2Re(1/M) 2, 2(* R )22 R),  (22)

and Re in Egs. (20) and (22) denotes the real part
of the product and the suffixes m and » in Py (mn)
refer to the combination of the pertinent orders of
perturbation in the wave function that are involved.

The Knight shift can similarly be expressed as
a summation over various orders of perturbation,
namely,

K= K,(00)+ K,(01) + K ,(11) + K, (02). (23)

Expressions for Px(00), Pr(01), Pr(11), and Pr(02)
can be obtained by using Eqs. (14), (16), and (17).
When this is done, we obtain a number of factors
of the form

<1\_17 5 et(ip-i'>-tﬂ‘f.§,,)>

(14

and

<_1 > et R ® 2Ry ks R, R )>
Ni,v,u. . ’

involving averages over ionic positions. Inthe solid
such summations can be derived from a knowledge
of the lattice positions, the averaging procedure
producing a temperature-dependent Debye-Waller
factor due to the effect of the lattice vibrations. '8
In the liquid one has to rely on interference data in
order to obtain these averages. One of these aver-
ages, namely,

(§ ettt opi, k), e
is directly available either from experiment!® or
the theory!®?® and is referred to as the interference
function. . For the other average involving coordi-
nates of three particles, no direct experimental
data are available and we have made the plausible
approximation

1 T BB LR N B LD
<__ 7 elpk) (R, Ry, 1(E-E")-(R, -R))

N tyu,v

]
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~I(|kp- ) I(| K- ")) . (25)
This approximation corresponds to neglecting three-
particle correlations®'? which are expected to con-
tribute, in general, only a 10-15% error. An
alternate approximation has been recently pro-
posed, % namely,

1 b euiF-I')-(ii,,-'ﬁ,)eui'-i")-('ﬁ“-'ﬁ,>>
Ny

14
< 5 ettkpE R, i EEr 0. ‘R et(iu-iF)~i‘>
N tap,v

=I(|Kp- &) [kp= k") . (26)

In the second form of the summations in Eq.
(26), Ky, k’, and k’’ appear symmetrically. How-
ever, it has been pointed out?® that Ky is physically
more unique than ¥ and k'’ because excitations
occur from the Fermi surface, the other two rep-
resenting the virtual intermediate-state momenta.
These features have been utilized to justify the un-
symmetrical form on the right-hand side of Eq.
(26). It is our feeling, however, that the approxi-
mation in (25) is no less justifiable than (26) and so
we have utilized Eq. (25) for our spin-density cal-
culations.

Using Eqs. (24) and (25), the expression for the
various terms in P takes the form

Pp(00)=1/NQ, , (27)
PL(01)= ( 1 ) WZRG (Pfdak'
%M‘{— Ife-%D), 8
2
Pp(11)= ( 1 )(;) ((P/d"’k'
2
%aﬁo—&ﬂll(lk l)) , (29

and

- [ ffs,3,,<E~1w;;r><f<'1leF> S IR
Pr(02)= 5o 35 2Re @@ [ [ a%a R I(|kp~Kk" DIk =% ])

1 ” - > - > > -
- mf%l((krk"hd%“ -<kFlwlkF>@fﬂ‘#”k',—f‘nrdkp—k"!)d"k"]. (30)

Note that in deriving Eqs. (28)-(30), we have re-
placed the energy denominator Ey,- E, by the cor-
responding kinetic-energy operator which in atomic
units (7=1, e?=2, m = 3) takes the form k% - k’2,
So far we have not considered the form of the
pseudopotential W(r). In general it can be split up

[
into what are referred to in the literature as local
and nonlocal components. While in some metals
one can obtain empirical fits to the Fermi surface
with only the local component, in some other metals
especially those with d cores such as cadmium and
zine, for example, the nonlocal component seems

’
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to be of crucial importance. We shall utilize a
form for the nonlocal pseudopotential proposed and
used by Stark and Falicov, 2 namely,

W(Y‘)= WL(;)“‘WNL(Y')

=2, [wn(F-R,) +wyn(F-R))] . (31)
The Wy, (T) and Wy, (T) refer to the local and non-
local components where

“’NL(;)=EzvleyY‘><l,.f'| ,

the summation in ! extending over the angular mo-
menta of the three outermost core states of the
Cd** ion, ?® namely, 4s, 4p, and 4d. The Fourier
components of wL(Y') and the parameters v; are ob-
tained by fitting Fermi-surface data in the solid
state to values obtained from the pseudopotential.
Local and nonlocal pseudopotential form factors for
typlcal relative orientations of Fermi momentum

k r (assuming spherical Fermi surface) and k F+q
for cadmium are shown in Fig. 1. Although in the
solid state one considers s only the matrix elements
(k1w Ik +K), where the K’s are discrete reciprocal-
lattice vectors, the form of the nonlocal part of

the pseudopotential-allows one to obtain from it the
matrix elements (EIWNL Ik +§) for continuous §.
The Fourier components of the local potential,
however, are only available for discrete K and had
to be interpolated to get (k|W |k +§) for continuous
4. Interpolated potentials of this type have been
used earlier for study of electron-phonon enhance-
ment effects®® on the specific heat of cadmium.

(32)

0.3 1

0.2 b

0.1

0.0

-0.1

-0.2

w (g) IN RYDBERGS

-0.3

-0.4

-0.5 1 1 1 1 1 1
0O 04 08 12 16 20 2.4

q IN ATOMIC UNITS

FIG. 1. Local and nonlocal pseudopotential form fac-
tors of cadmium: curve I, local pseudopotential; curve
I, scattering on the Fermi surface, i.e., both k and
k+q are on the Fermi surface; curve III, backward
scattering, i.e., k on the Fermi sphere andk+q1s smaller
than and parallel to k or antiparallel to k curve IV,
forward scattering i.e., kon the Fermi sphere and k+q
is larger than and parallel to k.
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To obtain first- and second-order contributions
to Pr we have to evaluate the integrals in Eqs.
(28)-(30) using the pseudopotential in Eq. (31).
the first-order shift it is convenient to define a
quantity as

For

J=0 [d% I(|kp-K' | (K |w|kp)/ (%~R"%), (33)

which can be split up into parts arising from the
local and nonlocal potentials, namely,

J=d +dy5 , (34)
where
Ju=0 [ d I([Kp- & wr([kp-K' |)/ (5= "2
(35)
and
Iyp=0 [ d% I([kp-& | XK |wyg [kp)/ R~ %"2) .
(36)

Using Eq. (32) the nonlocal form factors have the
form

(K oy [k #) = (47/99) 20 (2 + 10, T (K’ |)

X Ty([kp)Py(cosbpz,) ,  (37)

where

T kD=5 kv ar (38)
the U,(r) being the radial part of the appropriate
atomic core functions. P,(cosbz.z,)in Eq. (37) are
the Legendre polynomlals of order 1, and 9i'x is
the angle between k’ and k.

The angular integration (35) can be carried out
analytlcallg by changing the variable of integration
toq=kp—k’ and integrating first over the angular
components of §. The form of J;, after this simpli-
fication procedure is

To=—2 0 [“Iq)o @) n| L2 |qag . (39)
kg A q+2kp

However, such a procedure is not helpful in evaluat-
ing the integral in Eq. (36) since the form factors

in the numerator depend on 633, while the denom-
inator involves Gk'kF' The principal value integra-
tions were carried out numerically. The procedure
we have employed is giveninthe Appendix. For
purposes of computation, it is convenient to reex-
press Jyy, in the form

2 - o B’
Tan= S 5 @ s o, Ty([Rp ) @ [k 2anr TUED)
2 5 A [

x/lP,(K)
-1

I(|kp=-K%" )k (40)

where
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[Rp—K'| = (k%42 2= 2k gkk) /2,
the k being the cosine of the angle betweenk’ and k.

The first-order spin-density expression in (28) thus
reduces to

Pp(01)= (NQ)™ [/ (27)°]2Re(y +Jx1) . (41)

The (11) term in the second-order contribution
can also be shown similarly to have the form

Pp(11)= (NQ) [QF/ (2m)°N( T, +Jwr)? (42)
The other three second-order terms classified as
(02) are somewhat more complex in form than (11)
and cannot be expressed in terms of J, and Jy;.

Considering the first of these three terms first, we
see that it involves the double integral

I (1)=6 [ a% I([kp- &' | XK |0 ke )/ (2~ 2"2)
X ['(P f dsk"I( lE, _En I){En lw ,Er >/(ki‘_ B! 2)] .

(43)

In attempting to simplify this expression let us de-

note the principal value integral over the variable

En by

F(EI)= @f dsk"I(li’ _ En ,)(‘lzn lw IE,)/(ki‘_ B! z) i
(44)

The contribution to this integral from the local part
of w is given by

Fu([&’])
- (pfdsknl(IEI _ EI' I)wL( ]1';' _ En l )/(k%— B 2) ’
which by change of variables and integration over

the angles in the denominator as in the case of
P,(01) can be reexpressed in the form

Fy([R])=7; @ fqdql(q)wL(q)

ki__qz_klz_ Zqu
ke-qi -k’ %+ 2k'q

x ln (45)

Similarly, from the nonlocal part of w ,

>, 8172 N >,
Pk )= 5= 2 @+ 1 Tu([R7])

"t
© uzdknT(lk 1)
X 6’/ k %L_—k—n—z

0

1 - ->
X P I(|K'-Kk"ak . 46
[1 (0 1(| ) (46)

On substituting Eqs. (45) and (46) in Eq. (43) we
get a set of four terms corresponding to pairing
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between the local and nonlocal terms of the first
integral with those of the second integral, namely,

J'(1)=J£-L(1)+J'NL-NL(1)+J'L-NL(1)+J{¢L-L(1) (47)
with
N F (k')
Jl 1)= 2 gt 1L
-2 (1) @ﬁ k k————-k;_k,z
1
x2ﬂf11([EF-E’|)wL([kF—k'[)dx ,
(48)
’ 4m -
J yp-n(l)= [ Zz; (21 + l)vlTl(lkFl)

x0T (R
0

o« TR D)
Py

1
><27r/ P I(|kp-K'|)dr, (49)

-1

’ 4 -
JL-NLm-——g’; @+ 1T ([ )

X 0/,, r'2ar' F (&' )T (k)
0

1
« =2 [ PR p-F x|
k"),
(50)
and
* Fru(I®'1)
Fa)= 5t A

XZWLII(IEF-E’I)O)L([EF—E'|)dK .
(51)

The other two terms in the P,(02) expression in
Eq. (30) can also each be expressed as a sum of
four terms as in Eq. (47). However, the evaluation
of these component.terms does pose some prob-
lems. Thus from an inspection of the denominators
of the integrals in the second and third terms in
Eq. (30) one might get the impression that these
integrals would give infinite answers since the in-
tegrands diverge in the positive direction at the
singularity k'=k r. This impression is, however,
incorrect as will be demonstrated directly now by
carrying out the angular integrations for the inte-
grals involving W;. On making the substitution

-

q=kp-Kk’ in the integral
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@ [d%" |wy([Re=K"|) [2(|kp- K" |)/ (k% - k" 2P,
it follows that

¢ ["q*dq |on@) |T@2n [{dK/(q> + 2k pqr)®

=4n ¢ ["dq1g)|w, (@) |/ (q*- 4£2). (52)

The result in Eq. (52) is similar to the principal-
value integral in Eq. (40) and does not diverge.
The only difference from Eq. (40) is that the singu-
larity now occurs at ¢ = 2k instead of g=k,. The
angular integration over the direction of the g vari-
able cannot, however, be carried out analytically
for the partners of (52) involving |wy(q)wy.(3)!,
lwyr(Q)wr(Q)1, and |wyr(§)1% These integrals
have been estimated by a numerical comparison of
the pertinent integrands with those of Eq. (52). The
(02) term in P can thus be expressed in concise
form

Pr(02)= (NQ)™ 2 Re(d"), (53)

where

J'=d'(1) +J'(2) +J'(3), (54)

J'(2) and J'(3) representing the second and third
terms within the square brackets of Eq. (30).
These integrals can be evaluated in a similar man-
ner as J'(1).

Thus combining the (00), (01), (11), and (02)
terms in Py and using Eq. (12), one can express
the total Knight shift in the form

81 2 R .
Ks-—3—xs O”F <1+ 2n? 2RedJ + @ J
Qo ’
+ (2—‘”)5 2R6J> . (55)

For the numerical evaluation of K in the above
equation, one needs to have a knowledge of &,
0% , and x,, in addition to J and J’. The ionic
volume §, was taken to be the same as the Wigner-
Seitz volume in the solid state. For the spin sus-
ceptibility y, as will be discussed in Sec.III, we
have considered the free-electron value, namely,
¥s=0.95x%107® cgs volume units, The quantity 0;.
was calculated using the Hartree-Fock atomic core
functions tabulated by Mann?’; thus, O} =534,9.
For the evaluation of Jand J’ we have used the non-
local pseudopotential parameters of Stark and
Falicov?* and the experimental interference func-
tions of North and Wagner, 18

If there were no complications due to exchange-
enhancement, ECP, and orbital effects, as in solid
state, we could obtain T; using the calculated K
and the Korringa relation

(K§ T1T) 1 gea = (/4T Ry o /7,)? (56)
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TABLE I. Various terms contributing to the first- and
second-order spin densities in liquid cadmium at 350°C.
Note that these quantities are related to the spin densities
through Eqgs. (41), (42), and (53).

First order

Second order

(02) terms (11) terms
Term
Jy, JIny type 1 2 3

Jf.;, —0.056 0.030 0. 065

0.386 -0.606 Ji.y, 0.082 -0.044 -0.021 o .
JhyL 0.053 =—0.028 =-0,013
JiL.n, 0.137 -0.073 -0.035

where kjy is the Boltzmann constant. The ratio

between T, T calculated by this process and the ex-
perimental value can be utilized to analyze the im-
portance of the above effect.

III. RESULTS AND DISCUSSION

The various terms in Eqs. (39), (40), (48)-(51),
and (54) that constitute the contributions from the
first- and second-order spin-density terms are
preséented in Table I for the temperature 350 °C.

It is interesting to compare the contributions from
terms involving local and nonlocal parts of the
pseudopotential and their various combinations.
Examination of the first-order results indicate that
the nonlocal pseudopotential contribution is sub-
stantially larger and of opposite sign to that of its
local counterpart. One, therefore, should be par-
ticularly careful to include the effects of the non-
local terms, even if they lead to computational
difficulties. The breakdown of the contributions
from various terms in second order also exhibit
similar trends, the nonlocal-nonlocal component
being generally the leading term in the series for
each of the three terms that enter into the expres-
sion of P, (02). One also observes from Table I
that the signs of various combinations of local and
nonlocal contributions vary among the three com-
ponent terms in P (02) and that there is a substan-
tial cancellation between terms of comparable mag-
nitude but opposite sign. As a result of these can-
cellations, although the sum of the individual (02)
terms are larger than the (11) term, the net P, (02)
is comparable to Px(11). However, the (11) and
(02) terms (both total and individual terms) are
smaller than (00) and (01) terms, showing a definite
trend towards convergence of the total Pp.

This demonstration of convergence of the pertur-
bation expansion is important because, at a first
glance, one might expect problems connected with
singularities in the denominator of the various
terms in the spin-density expression. The second-
order terms tend to infinity at the singularity sub-
stantially faster than do the first order. If the
numerators of the integrands in both orders had
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been symmetric about the singularities, it is clear
that the associated spin densities would vanish, In
fact, the integrands in both cases are asymmetric
about the singularities and lead to nonvanishing
spin densities. The relative contributions of the
two orders depend sensitively on the region in Kk’
and k'’ from which the maximum contribution is
derived, regions near % being more favorable to
second-order terms due to the st_gonger singularity
they have in the neighborhood of k. However, a
numerical analysis of the first- and second-order
terms indicates that the major contributions to
them arise from admixtures of states with momenta
higher ( kpto}k,) than 2p. The energy denomina-
tors are therefore sizable and one expects that
their higher powers in higher-order terms will
effectively reduce the contributions from the latter.
The sum of the first- and second-order contribu-
tions to the spin densities [in units of (1/N§,)] ob-
tained by using results in Table I and Eqs. (41) and
(42) is seen to be 0. 83 at 350°C. However, one
can attempt to include the effects of higher-order
terms through a geometric-series approximation,
assuming the ratio of alternate orders to be equal
to that between the second and first orders. With
this approximation the spin density at 350 °C is
found to be 0. 80, in close agreement with our val-
ue 0. 83.

In evaluating the Knight shifts one needs, in ad-
dition to the direct spin density discussed above,
the Pauli-spin susceptibility x, and also the ECP
contribution to the spin density. Considering the
latter first, we refer to our recent solid-state
calculation'* for this effect. There, it was found
that the ECP contribution from the s part of the
conduction-electron wave function was about 10%
of the direct spin density while that from the higher
angular momentum components was negligibly

TABLE II. Spin density (in units of 1/NQg), Knight
shift (in %), and relaxation time (in deg sec) of liquid
cadmium at various temperatures.

Tem

Spin p
density
order 350 °C 450 °C 550 °C 650 °C
Zero order 1.0 1.0 1.0 1.0
First order -0.25 =~0.25 —0.23 -0.23
Second order 0.079 0.073 0.069 0.048
Total 0.83 0.82 0.84 0.82
Kgireet (%) 0.35 0.35 0.36 0.35
KZ°P (B 0.04 0.04 0.04 0.04
Kol (%) 0.39 0.39 0.40 0.39
T

! 0.38 0.38 0.36 0.38
(deg sec)
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TABLE III. Theoretical and empirical exchange-en-
hancement parameters 7, (for uniform susceptibility) and
Ny (for nonuniform susceptibility) for liquid and solid
cadmium,

Quantities Solid Liquid
Theoret- Empir- Theoret- Empir-
ical ical ical ical
Ns 1,17 1.89 1.32 2.05
LY, 1.27 3.10 1.55 2.92
2/ My 1.08 1.15 1.12 1.44
small. This smallness in the ECP contribution,

compared to that in solid beryllium and magnesium,®

was not primarily a consequence of the shape of the
Fermi surface, but a result of cancellation among
the various core states. One thus expects the ECP
contribution in the liquid to be no more than 10%

of the direct effect. As regards x,, there is unfor-
tunately no experimental measurement available,
neither in the liquid nor the solid state of cadmium.
Offhand, one would expect that the electrons in the
liquid resemble a free-electron gas due to the
disappearance of Brillouin-zone-boundary effects
that occur in the solid state. We have, therefore,
used the value of x, determined by the free-elec-
tron density of states, namely,

xi™° =0.95%10"® cgs volume units, (57)

and then have attempted to obtain the empirical en~
hancement factor due to the conduction-conduction
exchange effect by comparing theoretical and ex-
perimental K,. In Table II we have listed the spin
densities, Knight shift, and relaxation times at
four temperatures. From our results of K, in the
fourth row of Table II, it appears that one can fit
the experimental data over the range of tempera-
tures that are available, by a single enhancement
factor 13! **%(emp) listed®® in Table II. 1t is in-
teresting to compare 7} ®!%(emp) with the theo-
retical value®® obtained from a free-electron
effective-mass approximation. Assuming m*/m =1
for the liquid, one obtains the theoretical value
n3!®4(theoret) listed in Table III. Corresponding
empirical and theoretical enhancement factors in
the solid are also listed in Table III for comparison.
We consider next the relaxation time 7,. I
keeping with the Knight-shift analysis, we have
used the free-electron density of states in the
standard Korringa expression® as a reference to
study exchange-enhancement effects empirically.
As regards ECP effects, these are known to in-
fluence T,T differently® for the contributions from
the s and non-s components of the conduction-
electron contribution. The influence of the latter
is expected to be insignificant since it has been
demonstrated that ECP effects from non-s com-
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ponents of cadmijum are small. Consequently, the
influence of the ECP effect on the Korringa ratio

is expected to be unimportant.

On comparing our calculated T,T using the free-
electron density of states with the available experi-
mental data, it appears that the latter can be fitted
over the range of temperature studied by a nearly
constant enhancement factor shown in Table III.
The corresponding enhancement factor for the solid
state is also included for reference. The theo-
retical value® for 7, listed in Table III is obtained
from Moriya’s theory®® for the enhancement of
Xs(q), again using an effective mass corresponding
to the free electron for the liquid.

The important feature one notices from Table III
is that in both the solid and liquid there is a sub-
stantial difference between empirical enhancement
factors and those from currently available theory.
The factor 7%/7, gives the departure from the ideal
Korringa constant and is larger than unity as ex-
pected from theory. The reason for the latter is
that x,(q) is enhanced less effectively than x,(0)
through exchange effects. The difference between
enhancement effects in the solid and the liquid does
show up a little more effectively in the ratio ni/ My«
This is expected because this ratio is a reflection
of the difference between comparable enhancement
effects.

In drawing conclusions from Table III, it should
be pointed out that the empirical values of 7, and
7y were obtained by using wave functions obtained
in the pseudopotential scheme. However, thereisno
no exact evidence that pseudopotentials give nu-
merically correct wave functions. A recent pseudo-
potential calculation of K, in solid magnesium, using
the exchange-enhanced Y, in the framework of

Silverstein’s® theory, has shown good agreement
T T T
0.4 —
L]
o ® THEORY
3 03 -
x o EXPERIMENT
z
o8
= 02- -
o o
0.l 1 1 I
600 700 800 900 1000
TEMPERATURE IN °K
FIG. 2. Temperature dependence of relaxation time.

The solid and the dotted curves are theoretical predic-
tions without and with exchange-enhancement effects,
respectively.
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FIG. 3. Temperature dependence of Knight shift. The
solid and the dotted curves are theoretical predictions
without and with exchange-enhancement effects, respec-

tively.

with experiment. Kasowski and Falicov!® have

also been able to explain the temperature depen-
dence of isotropic and anisotropic Knight shifts
using wave functions derived from pseudopotential
model. A careful comparison between the actual
(OPW) and pseudopotential calculations is needed

to settle this issue. The following comments on the
nature of exchange enhancement, therefore, should
be taken with this qualification in mind.

It is worthwhile to remark that there are two
types of corrections to the free-electron theory
of exchange enhancement. The first one is due to
the presence of the potential around the ions which
is the relevant state of affairs in the liquid. In
the solid state one has, in addition, to consider the
anisotropy effects imposed by the lattice structure.
The fact that 1, and 7, in both the liquid and solid
differ substantially from free-electron values in-
dicates that the former effect is perhaps the major
source of correction.

Our calculated values of T,T are presented in
the last row of Table II. In Figs. 2 and 3 the
temperature dependence of calculated K, and T, T
are compared with experiment. For K, experi-
mental data are available only for a limited range
of temperatures near the melting point. For T,T,
data are, however, available for a wider range
of temperatures. The most important feature of
these results is the near constancy of both the
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experimental and theoretical value of K ;and T, T.
This is in marked contrast to the observed behavior
of K, and Ty T in liquid indium. The interference
functions I(g) which enter into the calculations also
show a similar trend with a much weaker tempera-
ture dependence for cadium than for indium. These

trends may be regarded as indicative of the tempera-

ture independence of x, and the exchange enhance-
ment factors 7, and 7, in the liquid.

IV. CONCLUSION

A first-principles analysis of the hyperfine spin
density in liquid metals has been developed up to
second order in perturbation theory using a pseudo-
potential formalism. Specific application has been
made to liquid cadmium. The results give evidence
for rapid convergence of higher-order terms and
strongly suggest that first-order perturbation in the
wave functions are sufficient for a reasonably
quantitative (to better than 10% understanding) of
K, and T,T. The results also indicate that the
nonlocal pseudopotential terms make dominant
contributions to the spin density. From our
analysis of Knight shift and relaxation time, it
has been possible to extract the pertinent exchange-
enhancement contributions to the g-dependent
and g-independent susceptibilities in the liquid from
experimental data. A comparison of these empiri-
cal enhancement factors with the predictions from
current free-electron theories indicates the need
for a better understanding of electron-electron
interactions in the presence of the potential field
of the ions.

The observed independence of K and 7,7 as
well as the interference function data I(g) on tem-
perature indicates that the other factors involved,
namely, ¥s, 7, and 7, , aretemperature indepen-
dent. This conclusion appears to be supported by
earlier semiquantitative studies of the temperature
dependence of K in other metals.® The interfer-
ence function I(g) thus turns out to be of crucial
importance for temperature dependence of reso-
nance properties.
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APPENDIX: TECHNIQUE FOR NUMERICAL EVALUATION
OF PRINCIPAL-VALUE INTEGRAL

The problem is to evaluate the prinicpal-value
integral of the form

’ x)dx
® _Jié_l_z , (A1)
0 X" =X
where f(x) is not symmetric about x=x, in which
case the integral would have vanished. We rewrite
the integral as

o x0-5
d
of L =limf fde o Lldx
X" =% -0, X7 =Xp 620 xye0 =X0
(A2)

The right-hand side of Eq. (A2) can be reexpressed
as

©

0 f(x) —gl) f0) -gle)

lim 5 - >— dx +1lim 2
6-0J, X" —Xo 5-0), 45 ¥ X0
-b ©
%0
. x)dx . x) dx
+1lim gg—)z— +lim g—(g)_xz , (A3)
s-0J, X" =X0 6-0 o+0 X" =Xp

where the reference function g(x) is chosen in such
a way that it satisfies the following two conditions:

lim, i.e., lim [f(x) —g(x)]~0 (A4)
6-0 xX=xg
and
“etar (7 glx)dx
lim 2 2+f 2L (A5)
6-0 0 X" —Xg x0+ﬁx ~Xg

Substituting expression (A3) in Eq. (A2) and using
the conditions in Eqs. (A4) and (A5), we have

»f(x)dx_ " flx) -glx)
<P0 prgag _fo 2 dx .

(A6)

The expression for g(x) in Eq. (A7) was found to
satisfy the conditions (A4) and (A5) and was thus
suitable for our evaluation of principal-value inte-
gral as expressed in Eq. (A6)

g(x) = (w +x0) [f (%0)/2x](xo/x)% . (A7)

The Gauss-Laguerre integration was utilized in the
numerical integration of (A6).
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